
MySQL Indexing
Best Practices

Peter Zaitsev, CEO
Percona Inc
August 15, 2012

You’ve Made a Great Choice !

• Understanding indexing is crucial both for
Developers and DBAs

• Poor index choices are responsible for large
portion of production problems

• Indexing is not a rocket science

MySQL Indexing: Agenda

• Understanding Indexing

• Setting up best indexes for your applications

• Working around common MySQL limitations

Indexing in the Nutshell

• What are indexes for ?

– Speed up access in the database

– Help to enforce constraints (UNIQUE, FOREIGN
KEY)

– Queries can be ran without any indexes

• But it can take a really long time

Types of Indexes you might heard about

• BTREE Indexes
– Majority of indexes you deal in MySQL is this type

• RTREE Indexes
– MyISAM only, for GIS

• HASH Indexes
– MEMORY, NDB

• BITMAP Indexes
– Not Supported by MySQL

• FULLTEXT Indexes
– MyISAM, Innodb planned in MySQL 5.6

Family of BTREE like Indexes

• A lot of different implementations

– Share same properties in what operations they can
speed up

– Memory vs Disk is life changer

• B+ Trees are typically used for Disk storage

– Data stored in leaf nodes

B+Tree Example

Branch/Root Node

Less than 3

Leaf Node Data Pointers

Indexes in MyISAM vs Innodb

• In MyISAM data pointers point to physical
offset in the data file

– All indexes are essentially equivalent

• In Innodb

– PRIMARY KEY (Explicit or Implicit) - stores data in
the leaf pages of the index, not pointer

– Secondary Indexes – store primary key as data
pointer

What Operations can BTREE Index do ?

• Find all rows with KEY=5 (point lookup)

• Find all rows with KEY>5 (open range)

• Find all rows with 5<KEY<10 (closed range)

• NOT find all rows with last digit of the KEY is
Zero

– This can’t be defined as a “range” operation

String Indexes

• There is no difference… really

– Sort order is defined for strings (collation)

• “AAAA” < “AAAB”

• Prefix LIKE is a special type of Range

– LIKE “ABC%” means

• “ABC[LOWEST]”<KEY<“ABC[HIGHEST]”

– LIKE “%ABC” can’t be optimized by use of the
index

Multiple Column Indexes

• Sort Order is defined, comparing leading
column, then second etc

– KEY(col1,col2,col3)

– (1,2,3) < (1,3,1)

• It is still one BTREE Index; not a separate BTREE
index for each level

Overhead of The Indexing

• Indexes are costly; Do not add more than you
need

– In most cases extending index is better than
adding new one

• Writes - Updating indexes is often major cost
of database writes

• Reads - Wasted space on disk and in memory;
additional overhead during query optimization

Impact on Cost of Indexing

• Long PRIMARY KEY for Innodb
– Make all Secondary keys longer and slower

• “Random” PRIMARY KEY for Innodb
– Insertion causes a lot of page splits

• Longer indexes are generally slower
• Index with insertion in random order

– SHA1(‘password’)

• Low selectivity index cheap for insert
– Index on gender

• Correlated indexes are less expensive
– insert_time is correlated with auto_increment id

Indexing Innodb Tables

• Data is clustered by Primary Key

– Pick PRIMARY KEY what suites you best

– For comments – (POST_ID,COMMENT_ID) can be
good PRIMARY KEY storing all comments for single
post close together

• Alternatively “pack” to single BIGINT

• PRIMARY KEY is implicitly appended to all indexes

– KEY (A) is really KEY (A,ID) internally

– Useful for sorting, Covering Index.

How MySQL Uses Indexes

• Data Lookups

• Sorting

• Avoiding reading “data”

• Special Optimizations

Using Indexes for Data Lookups

• SELECT * FROM EMPLOYEES WHERE
LAST_NAME=“Smith”

– The classical use of index on (LAST_NAME)

• Can use Multiple column indexes

– SELECT * FROM EMPLOYEES WHERE
LAST_NAME=“Smith” AND DEPT=“Accounting”

– Will use index on (DEPT,LAST_NAME)

It Gets Tricky With Multiple Columns

• Index (A,B,C) - order of columns matters
• Will use Index for lookup (all listed keyparts)

– A>5
– A=5 AND B>6
– A=5 AND B=6 AND C=7
– A=5 AND B IN (2,3) AND C>5

• Will NOT use Index
– B>5 – Leading column is not referenced
– B=6 AND C=7 - Leading column is not referenced

• Will use Part of the index
– A>5 AND B=2 - range on first column; only use this key part
– A=5 AND B>6 AND C=2 - range on second column, use 2 parts

The First Rule of MySQL Optimizer

• MySQL will stop using key parts in multi part
index as soon as it met the real range (<,>,
BETWEEN), it however is able to continue
using key parts further to the right if IN(…)
range is used

Using Index for Sorting

• SELECT * FROM PLAYERS ORDER BY SCORE
DESC LIMIT 10
– Will use index on SCORE column

– Without index MySQL will do “filesort” (external
sort) which is very expensive

• Often Combined with using Index for lookup
– SELECT * FROM PLAYERS WHERE COUNTRY=“US”

ORDER BY SCORE DESC LIMIT 10
• Best served by Index on (COUNTRY,SCORE)

Multi Column indexes for efficient sorting

• It becomes even more restricted!
• KEY(A,B)
• Will use Index for Sorting

– ORDER BY A - sorting by leading column
– A=5 ORDER BY B - EQ filtering by 1st and sorting by 2nd
– ORDER BY A DESC, B DESC - Sorting by 2 columns in same order
– A>5 ORDER BY A - Range on the column, sorting on the same

• Will NOT use Index for Sorting
– ORDER BY B - Sorting by second column in the index
– A>5 ORDER BY B – Range on first column, sorting by second
– A IN(1,2) ORDER BY B - In-Range on first column
– ORDER BY A ASC, B DESC - Sorting in the different order

MySQL Using Index for Sorting Rules

• You can’t sort in different order by 2 columns

• You can only have Equality comparison (=) for
columns which are not part of ORDER BY

– Not even IN() works in this case

Avoiding Reading The data

• “Covering Index”
– Applies to index use for specific query, not type of

index.

• Reading Index ONLY and not accessing the “data”
• SELECT STATUS FROM ORDERS WHERE

CUSTOMER_ID=123
– KEY(CUSTOMER_ID,STATUS)

• Index is typically smaller than data
• Access is a lot more sequential

– Access through data pointers is often quite “random”

Min/Max Optimizations

• Index help MIN()/MAX() aggregate functions

– But only these

• SELECT MAX(ID) FROM TBL;

• SELECT MAX(SALARY) FROM EMPLOYEE
GROUP BY DEPT_ID

– Will benefit from (DEPT_ID,SALARY) index

– “Using index for group-by”

Indexes and Joins

• MySQL Performs Joins as “Nested Loops”
– SELECT * FROM POSTS,COMMENTS WHERE

AUTHOR=“Peter” AND COMMENTS.POST_ID=POSTS.ID
• Scan table POSTS finding all posts which have Peter as an Author

• For every such post go to COMMENTS table to fetch all comments

• Very important to have all JOINs Indexed

• Index is only needed on table which is being looked up
– The index on POSTS.ID is not needed for this query

performance

• Re-Design JOIN queries which can’t be well indexed

Using Multiple Indexes for the table

• MySQL Can use More than one index

– “Index Merge”

• SELECT * FROM TBL WHERE A=5 AND B=6

– Can often use Indexes on (A) and (B) separately

– Index on (A,B) is much better

• SELECT * FROM TBL WHERE A=5 OR B=6

– 2 separate indexes is as good as it gets

– Index (A,B) can’t be used for this query

Prefix Indexes

• You can build Index on the leftmost prefix of
the column

– ALTER TABLE TITLE ADD KEY(TITLE(20));

– Needed to index BLOB/TEXT columns

– Can be significantly smaller

– Can’t be used as covering index

– Choosing prefix length becomes the question

Choosing Prefix Length

• Prefix should be “Selective enough”

– Check number of distinct prefixes vs number of
total distinct values

 mysql> select count(distinct(title)) total,

count(distinct(left(title,10))) p10,

count(distinct(left(title,20))) p20 from title;

+--------+--------+--------+

| total | p10 | p20 |

+--------+--------+--------+

| 998335 | 624949 | 960894 |

+--------+--------+--------+

1 row in set (44.19 sec)

Choosing Prefix Length

• Check for Outliers

– Ensure there are not too many rows sharing the
same prefix

mysql> select count(*) cnt, title tl

from title group by tl order by cnt desc

limit 3;

+-----+-----------------+

| cnt | tl |

+-----+-----------------+

| 136 | The Wedding |

| 129 | Lost and Found |

| 112 | Horror Marathon |

+-----+-----------------+

3 rows in set (27.49 sec)

mysql> select count(*) cnt, left(title,20) tl

from title group by tl order by cnt desc

limit 3;

+-----+----------------------+

| cnt | tl |

+-----+----------------------+

| 184 | Wetten, dass..? aus |

| 136 | The Wedding |

| 129 | Lost and Found |

+-----+----------------------+

3 rows in set (33.23 sec)

Most common Titles Most Common Title Prefixes

How MySQL Picks which Index to Use ?

• Performs dynamic picking for every query
execution

– The constants in query texts matter a lot

• Estimates number of rows it needs to access
for given index by doing “dive” in the table

• Uses “Cardinality” statistics if impossible

– This is what ANALYZE TABLE updates

More on Picking the Index

• Not Just minimizing number of scanned rows
• Lots of other heuristics and hacks

– PRIMARY Key is special for Innodb
– Covering Index benefits
– Full table scan is faster, all being equal
– Can we also use index for Sorting

• Things to know
– Verify plan MySQL is actually using
– Note it can change dynamically based on constants

and data

Use EXPLAIN

• EXPLAIN is a great tool to see how MySQL
plans to execute the query

– http://dev.mysql.com/doc/refman/5.5/en/using-
explain.html

– Remember real execution might be different

mysql> explain select max(season_nr) from title group by production_year;

+----+-------------+-------+-------+---------------+-----------------+---------+------+------+--------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+-------+---------------+-----------------+---------+------+------+--------------------------+

| 1 | SIMPLE | title | range | NULL | production_year | 5 | NULL | 201 | Using index for group-by |

+----+-------------+-------+-------+---------------+-----------------+---------+------+------+--------------------------+

1 row in set (0.01 sec)

http://dev.mysql.com/doc/refman/5.5/en/using-explain.html
http://dev.mysql.com/doc/refman/5.5/en/using-explain.html
http://dev.mysql.com/doc/refman/5.5/en/using-explain.html

MySQL Explain 101

• Look at the “type” sorted from “good” to “bad”
– system,const,eq_ref,ref,range,index,ALL

• Note “rows” – higher numbers mean slower
query

• Check “key_len” – shows how many parts of the
key are really used

• Watch for Extra.
– Using Index - Good

– Using Filesort, Using Temporary - Bad

Indexing Strategy

• Build indexes for set of your performance critical
queries
– Look at them together not just one by one

• Best if all WHERE clause and JOIN clauses are
using indexes for lookups
– At least most selective parts are

• Generally extend index if you can, instead of
creating new indexes

• Validate performance impact as you’re doing
changes

Indexing Strategy Example

• Build Index order which benefits more queries

– SELECT * FROM TBL WHERE A=5 AND B=6

– SELECT * FROM TBL WHERE A>5 AND B=6

– KEY (B,A) Is better for such query mix

• All being equal put more selective key part first

• Do not add indexes for non performance
critical queries

– Many indexes slow system down

Trick #1: Enumerating Ranges

• KEY (A,B)

• SELECT * FROM TBL WHERE A BETWEEN 2
AND 4 AND B=5

– Will only use first key part of the index

• SELECT * FROM TBL WHERE A IN (2,3,4) AND
B=5

– Will use both key parts

Trick #2: Adding Fake Filter

• KEY (GENDER,CITY)

• SELECT * FROM PEOPLE WHERE CITY=“NEW
YORK”
– Will not be able to use the index at all

• SELECT * FROM PEOPLE WHERE GENDER IN
(“M”,”F”) AND CITY=“NEW YORK”
– Will be able to use the index

• The trick works best with low selectivity columns.
– Gender, Status, Boolean Types etc

Trick #3: Unionizing Filesort

• KEY(A,B)

• SELECT * FROM TBL WHERE A IN (1,2) ORDER BY
B LIMIT 5;

– Will not be able to use index for SORTING

• (SELECT * FROM TBL WHERE A=1 ORDER BY B
LIMIT 5) UNION ALL (SELECT * FROM TBL WHERE
A=2 ORDER BY B LIMIT 5) ORDER BY B LIMIT 5;

– Will use the index for Sorting. “filesort” will be needed
only to sort over 10 rows.

Join us at Webinars

• Full Text Search Throwdown, Aug 22nd

• Building High a High Availability MySQL Cluster
with Percona Replication Manager (PRM), Sep
26th

• Learn More

– http://www.percona.com/webinars/

http://www.percona.com/webinars/
http://www.percona.com/webinars/
http://www.percona.com/webinars/

Learn More at Percona Live MySQL Conferences

• Percona Live New York,2012
– October 1,2
– http://www.percona.com/live/nyc-2012/

• Percona Live London, 2012
– December 3,4
– http://www.percona.com/live/london-2012/

• Percona Live MySQL Conference and Expo 2013
– April 22-25, Santa Clara,CA
– http://www.percona.com/live/mysql-conference-

2013/

http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/nyc-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/london-2012/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/
http://www.percona.com/live/mysql-conference-2013/

Immersive MySQL Learning with Percona Training

• Phoenix,AZ August 20-23

• Madrid, Spain September 2-6

• Portland,OR September 10-13

• Paris, France September 24-27

• Salt Lake City,UT September 24-27

• Houston,TX October 1-4

• Learn More:
http://www.percona.com/training/

http://www.percona.com/training/
http://www.percona.com/training/

Thank You !

• pz@percona.com

• http://www.percona.com

• @percona at Twitter
• http://www.facebook.com/Percona

mailto:pz@percona.com
http://www.percona.com/
http://www.facebook.com/Percona

